Energy loss of hard scattered partons in Au+Au collisions determined from measurements of π^0 and charged hadrons

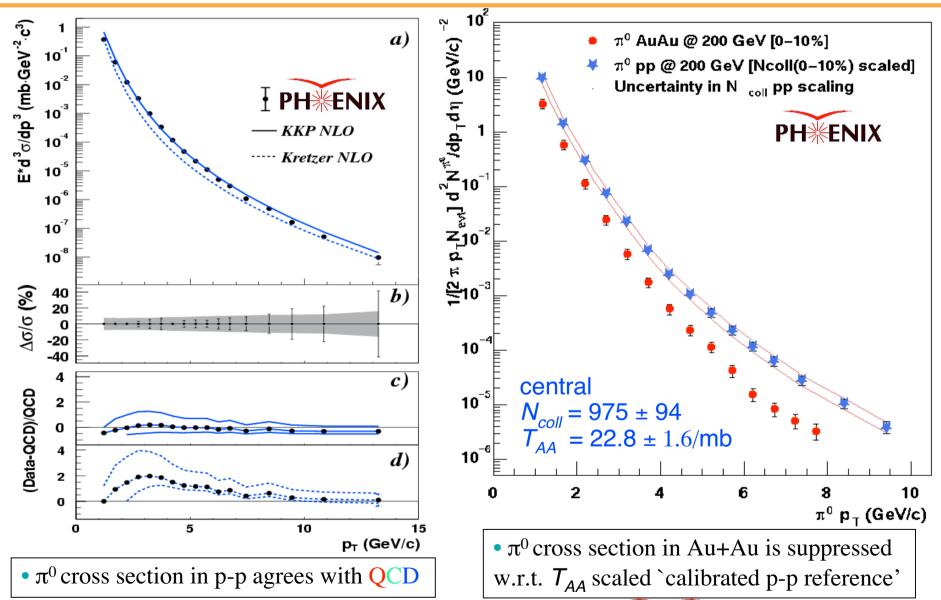
M. J. Tannenbaum Brookhaven National Laboratory Upton, NY 11973 USA

PHENIX Collaboration

See nucl-ex/0410003

DNP 2004, Chicago IL October 30, 2004

"THE most exciting discovery at RHIC"'-MJT

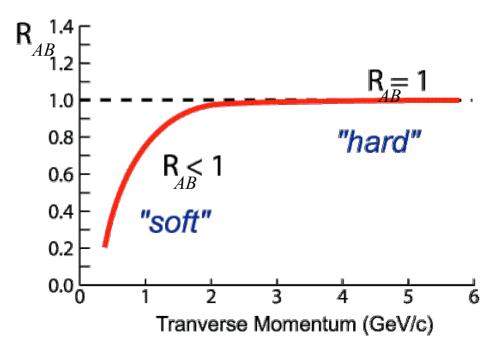


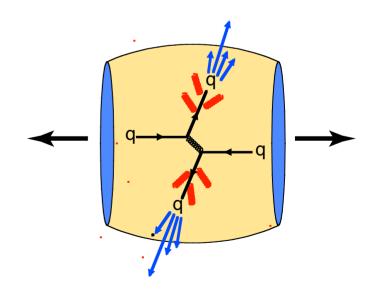
The Nuclear Modification Factor R_{AB} is the ratio of pointlike scaling of an A+B measurement to p-p

Nuclear Modification Factor:

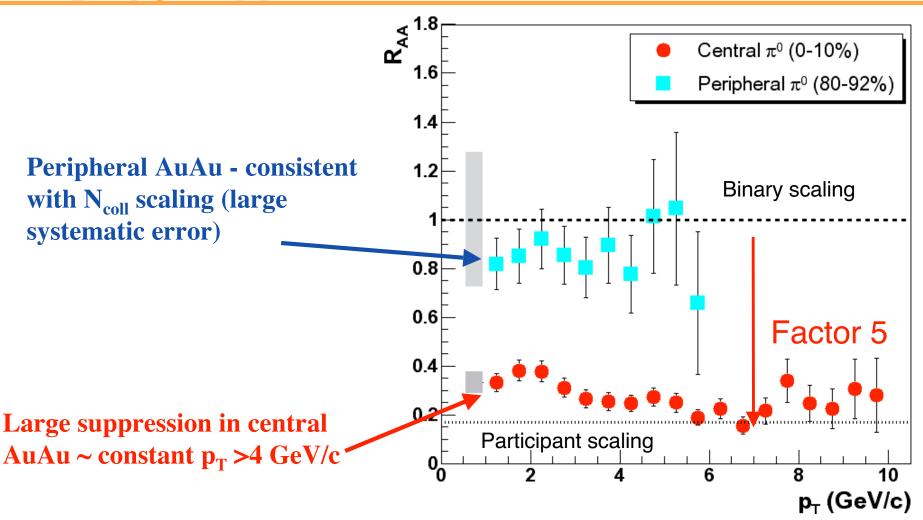
$$R_{AB}(p_T) = \frac{d^2N^{AB}/dp_Td\eta}{T_{AB}d^2\sigma^{pp}/dp_Td\eta} = \frac{M(p_T)}{R(p_T)}$$

$$T_{AB} = N_{coll} / \sigma_{Inel}^{NN}$$





$R_{AA}(\pi^0)$ AuAu:pp 200GeV High p_T Suppression flat from 3 to 10 GeV/c!



DNP2004

PRL 91, 072301 (2003)

Control Experiment d+Au shows Cronin effect

Theory explains both:

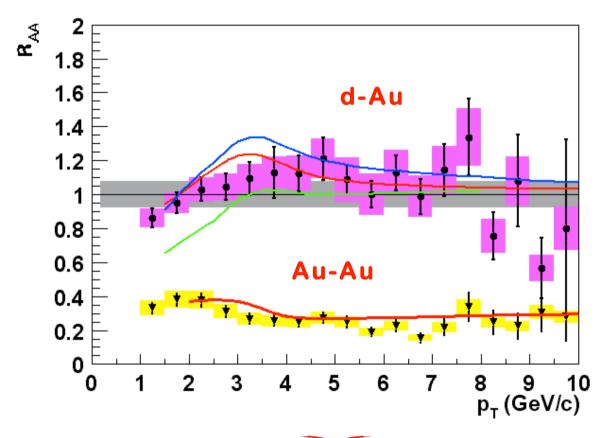
- ✓ Au-Au suppression (I. Vitev and M. Gyulassy, hep-ph/0208108)
- ✓ d-Au enhancement (I. Vitev, nucl-th/0302002)

See nucl-th/0302077 for a review.

$$\frac{dN_g}{dy} \sim 1100$$

 $\varepsilon = 15 \text{ GeV/fm}^3$

for Au+Au central



Suppression is Final State Medium-Effect

Energy loss of partons in dense matter--A medium effect predicted in QCD---Energy loss by colored parton in medium composed of unscreened color charges by gluon bremsstrahlung--LPM radiation

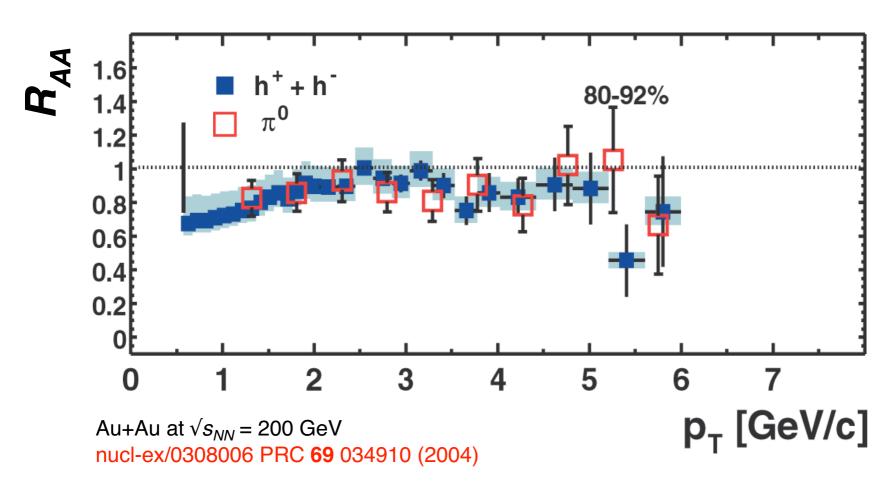
✓ Gyulassy, Levai, Vitev, Wang, Baier, Wiedemann...

See nucl-th/0302077 for a review.

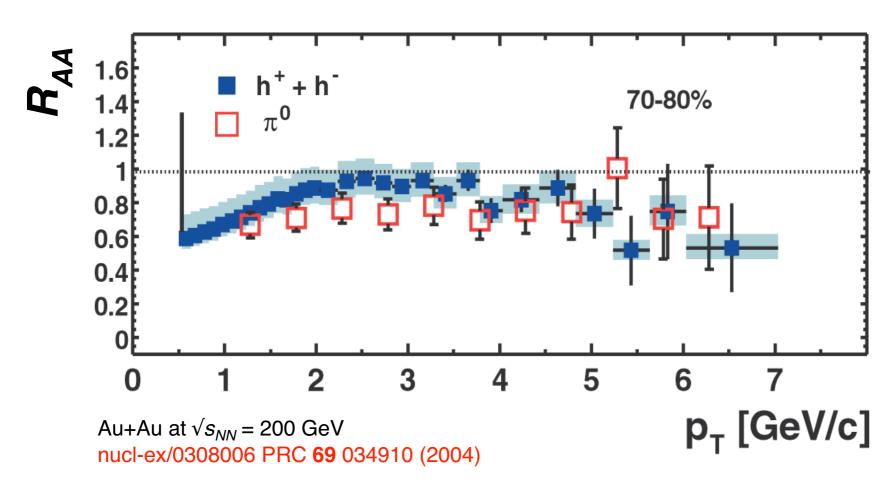
- ✓ Baier, Dokshitzer, Mueller, Peigne, Shiff, NPB483, 291(1997), PLB345, 277(1995), Baier hep-ph/0209038, $\Lambda E \approx L^2$
- From Vitev nucl-th/0404052:

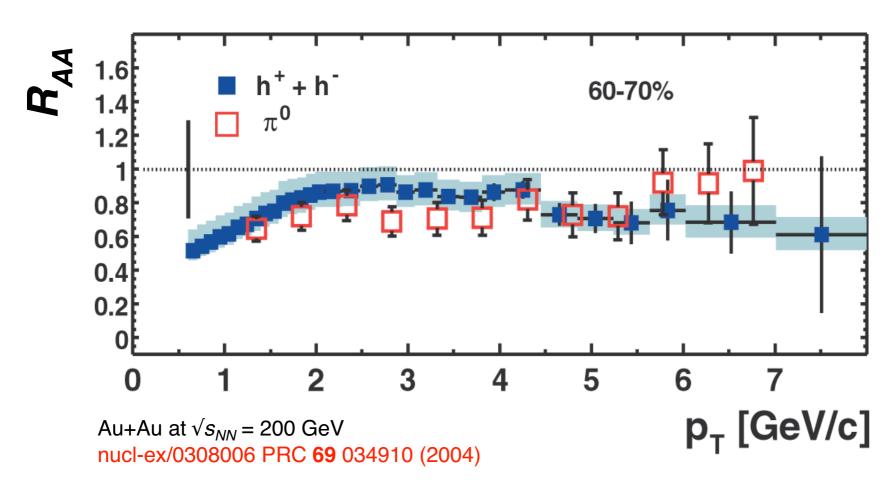
$$\frac{\langle \Delta E \rangle}{E} \approx \frac{9C_R \pi \alpha_s^3}{4} \sqrt{\frac{1}{A_\perp} \frac{dN^g}{dy}} L \frac{1}{E} \ln \frac{2E}{\mu^2 L} + \cdots$$

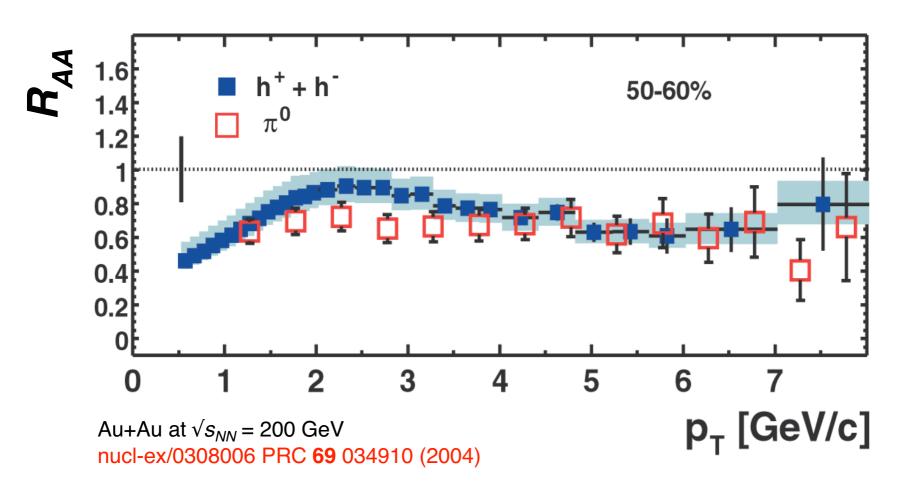
• Can we measure these relationships?

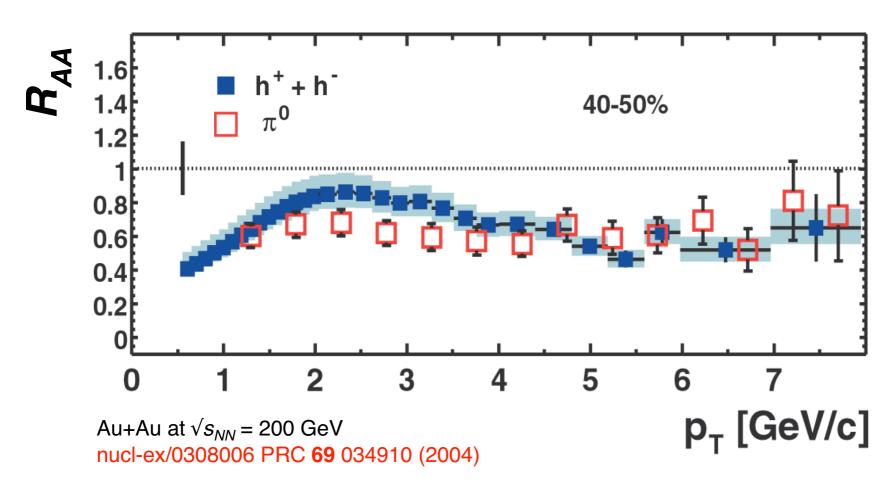


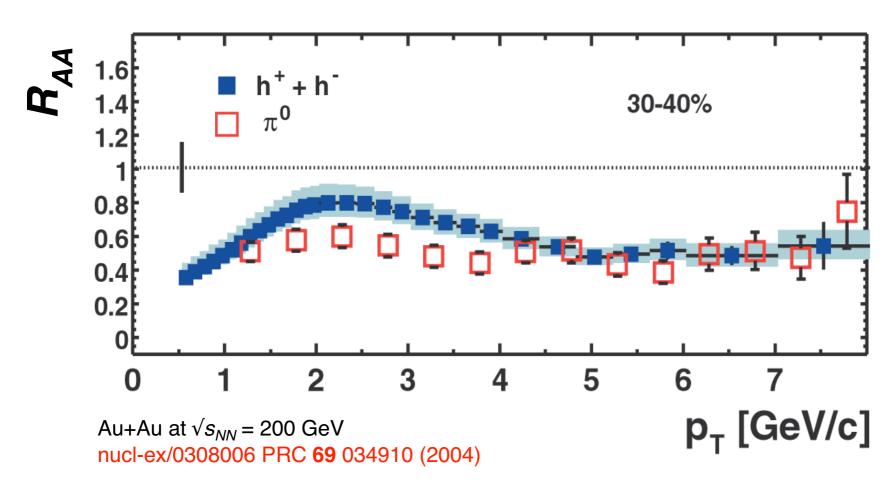
$R_{AA}(p_T)$ is constant for $p_T > 4.5$ GeV/c for both π^0 and $h^+ + h^-$

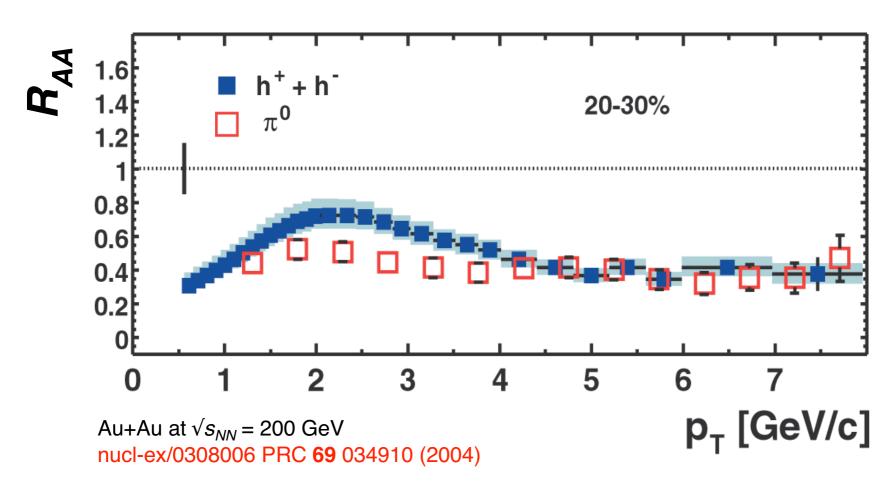


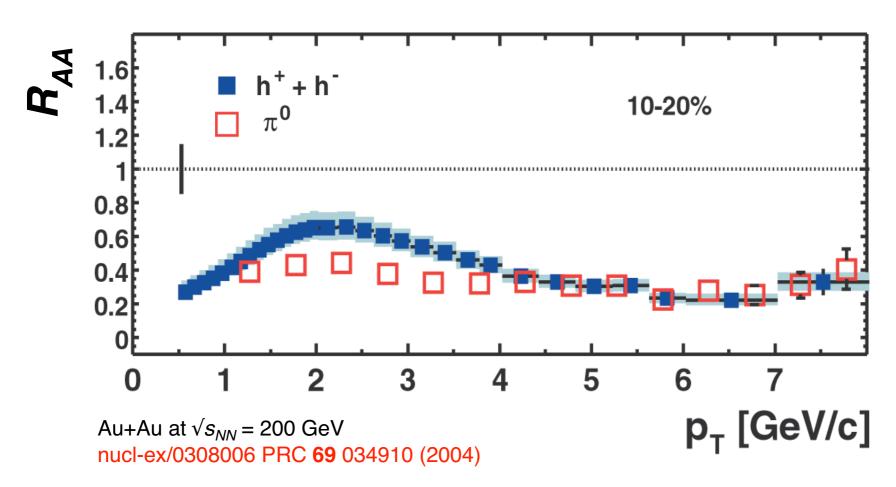


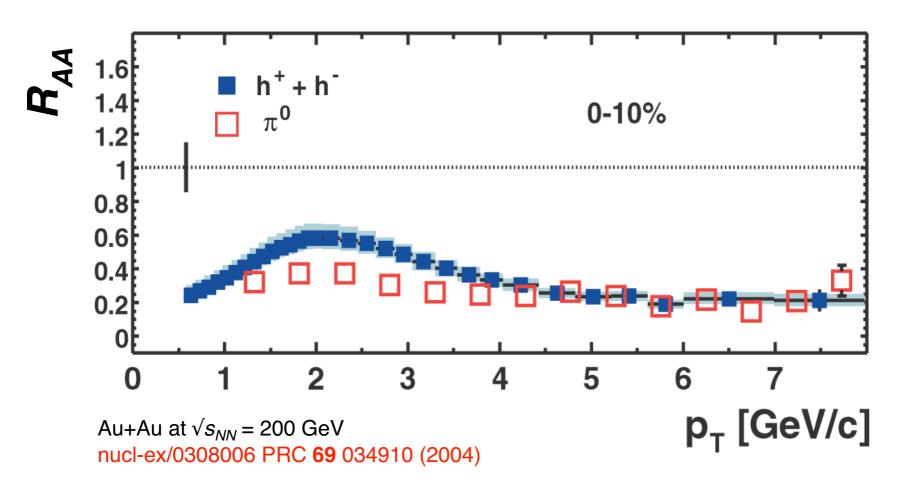


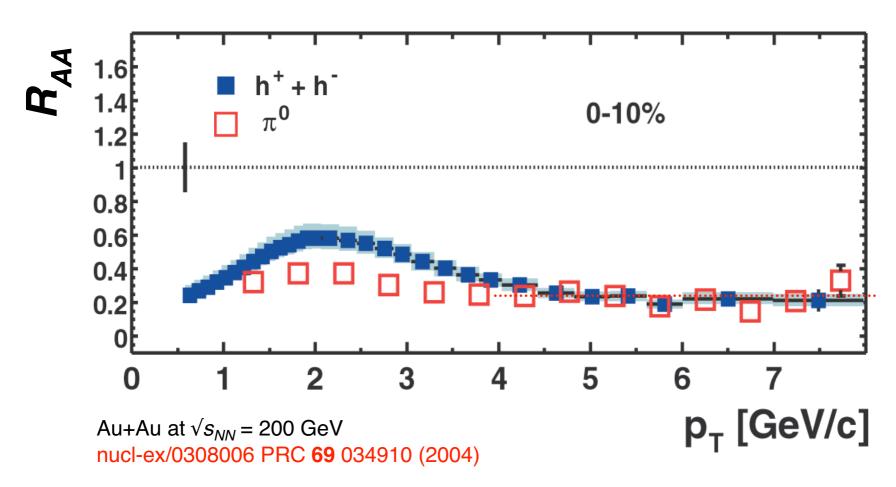




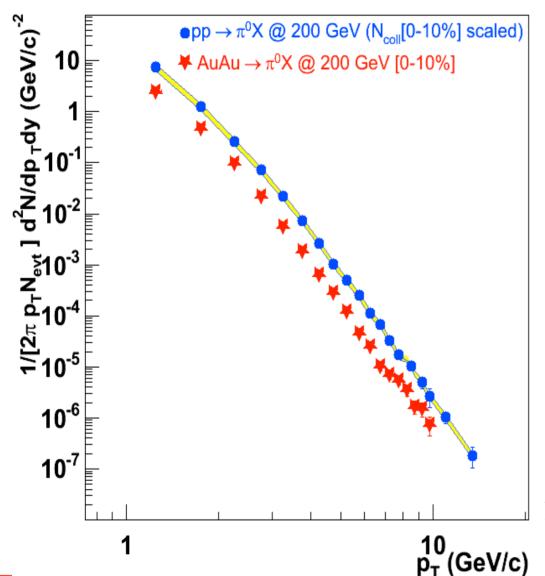








Mathematically the suppression is equivalent to a shift in the spectrum due to energy loss.



- • $R_{AA}(p_T)$ =constant for $p_T > 4$
- $d\sigma/p_T dp_T$ is $p_T^{-8.1}$

$$R_{AA}(p_T) = \frac{M(p_T)}{R(p_T)}$$

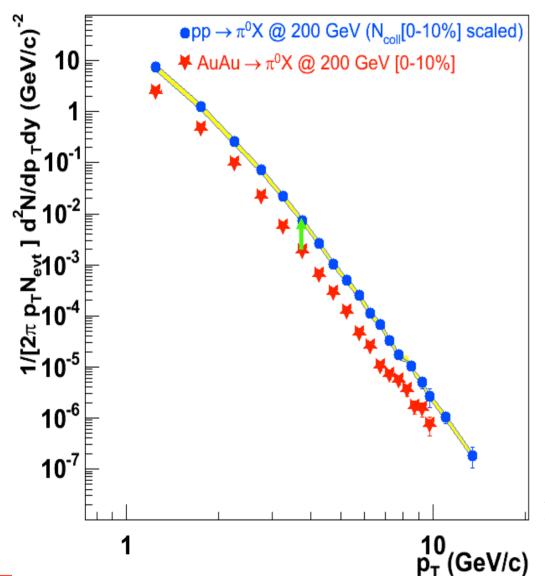
$$M(p_T) = R(p_T') \times \frac{dp_T'}{dp_T}$$

$$p_T' = p_T + S(p_T)$$

$$R_{AA}(p_T) = \left(1 - \frac{\Delta E(p_T)}{p_T}\right)^{8.1-2}$$

$$1 - R_{AA}(p_T)^{\frac{1}{8.1-2}} = \frac{\Delta E(p_T)}{p_T} = const$$

Mathematically the suppression is equivalent to a shift in the spectrum due to energy loss.



- ${}^{\bullet}R_{AA}(p_T)$ =constant for $p_T > 4$
- $d\sigma/p_T dp_T$ is $p_T^{-8.1}$

$$R_{AA}(p_T) = \frac{M(p_T)}{R(p_T)}$$

$$M(p_T) = R(p_T') \times \frac{dp_T'}{dp_T}$$

$$p_T' = p_T + S(p_T)$$

$$R_{AA}(p_T) = \left(1 - \frac{\Delta E(p_T)}{p_T}\right)^{8.1-2}$$

$$1 - R_{AA}(p_T)^{\frac{1}{8.1-2}} = \frac{\Delta E(p_T)}{p_T} = const$$

Mathematically the suppression is equivalent to a shift in the spectrum due to energy loss.



- • $R_{AA}(p_T)$ =constant for $p_T > 4$
- $d\sigma/p_T dp_T$ is $p_T^{-8.1}$

$$R_{AA}(p_T) = \frac{M(p_T)}{R(p_T)}$$

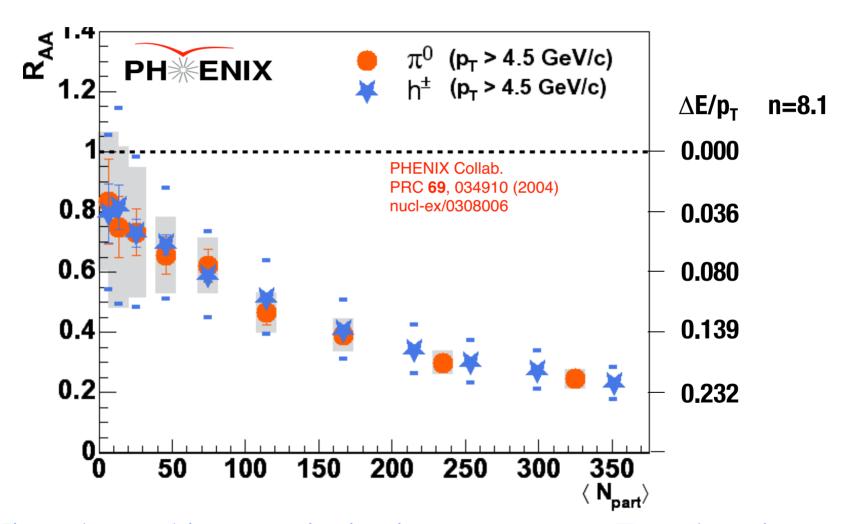
$$M(p_T) = R(p_T') \times \frac{dp_T'}{dp_T}$$

$$p_T' = p_T + S(p_T)$$

$$R_{AA}(p_T) = \left(1 - \frac{\Delta E(p_T)}{p_T}\right)^{8.1-2}$$

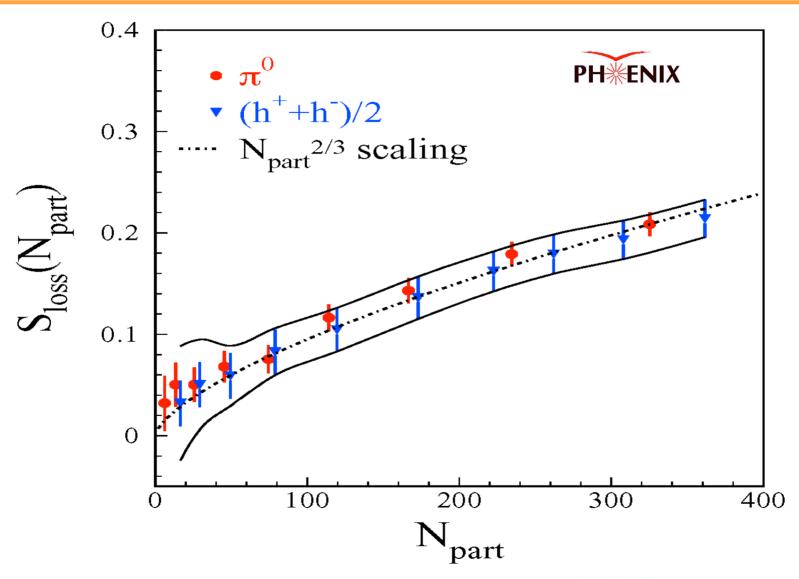
$$1 - R_{AA}(p_T)^{\frac{1}{8.1-2}} = \frac{\Delta E(p_T)}{p_T} = const$$

Estimate of $\Delta E/p_T$ from $R_{\Delta\Delta}$ vs centrality

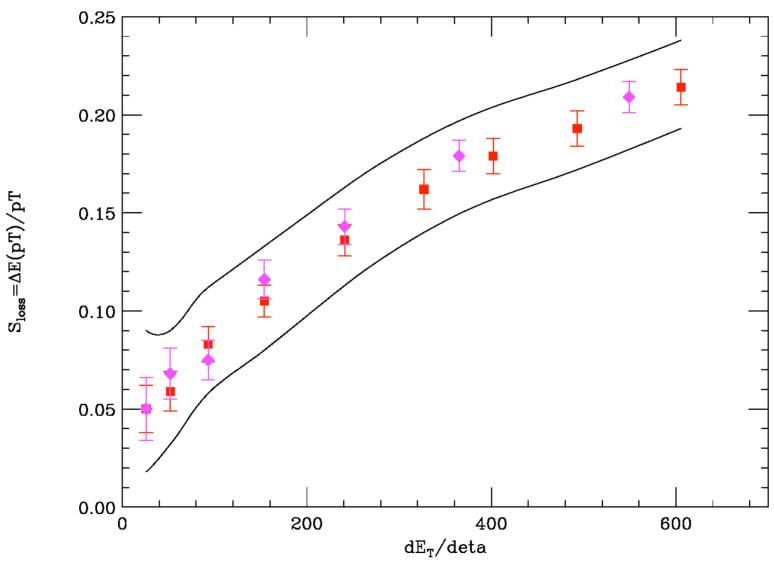


Nice---but nothing quantitative jumps out at me. Try other plots.

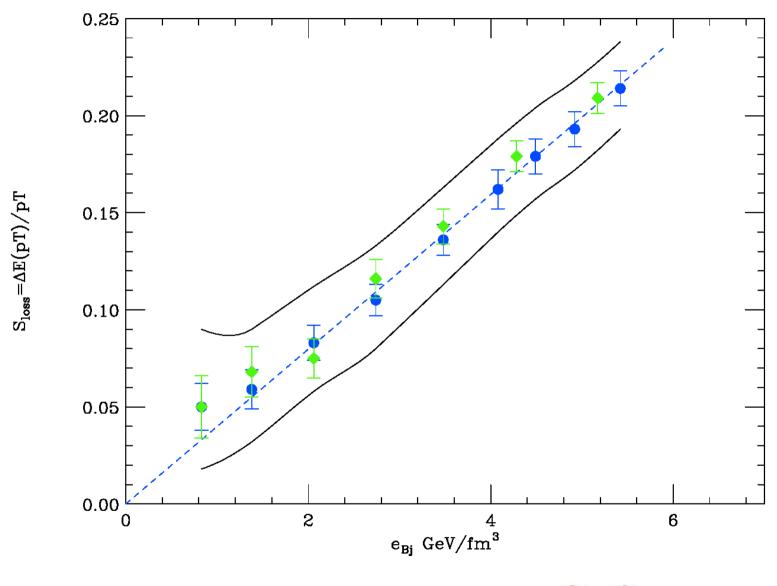
Plot $\Delta E(p_T)/p_T = S_{loss}$ vs centrality (Npart)



Plot $\Delta E(p_T)/p_T$ vs centrality $dE_T/d\eta(Npart)$



Plot $\Delta E(p_T)/p_T$ vs centrality $\varepsilon_{Bi}(Npart)$



Conclusions

- A crucial issue is whether RAA=1 means zero suppression, or do we have to account for the Cronin effect---Affects shape of $\Delta E(p_T)/p_T$ curve.
- Relationships are suggestive, but L dependence is obscure.
- Should do same analysis as a function of event plane since almond shape means L is different in-plane and normal to plane (Next Talk).
- Note that I use shift in spectrum, $S(p_T)$, and $\Delta E(p_T)$ interchangeably, but $S(p_T)$ is biased to lower energy losses since events with larger energy loss are buried under events at lower p_T with smaller energy loss. According to GLV true $\Delta E(p_T)$ is larger by a factor ~1.5-2.

